

AES 143 Network Audio Track

How to make an AES70 controller

Session NA10 October 21, 2017

Agenda

- AES70 Concepts for Controllers
 Morten Lave, Principal, All Access Consulting
- Issues in Controller Design
 Marc Smaak, Manager Platforms Group, Bosch Communications
- What Kind of Controller Should I Make?
 Tom de Brouwer, Software Engineer, Bosch Communications
- Developer Resources Available
 Tom de Brouwer, Software Engineer, Bosch Communications
 - **Examples / Demonstrations**

Selected AES70 Concepts for controllers

- DNS-SD, registration, browsing etc.
- New connection modalities coming (UDP, Web-sockets, etc.)
- Subscriptions
- Enumeration and name searching
- AES70 and User Interfaces
- Keeping the connection and knowing when it is gone
- Security

DNS-SD, registration, browsing etc.

- Formerly known as Bonjour
- AES70 is using a registered service identifier
- Devices register them self with the service (multicast, here I am)
- Controllers can browse registrations, get an inventory of devices
- The registration will contain IP address and port number
- The controller can make a TCP/IP connection to the device.
- Through the Device object and other required objects the controller can obtain detailed information about the device.

New connection modalities coming (UDP, Web-sockets, etc.)

- Current standard defines OCP.1 which is TCP/IP
- The layer separation allows for multiple transport layer protocols
- Web-sockets
- UDP
- Other such as USB, Serial etc.

Subscriptions

- Keeping multiple controllers up to date
- Subscribe to certain or all objects
- Get notified when changes occur
- Subscribing to sensors
- Observers

Enumeration and name searching

- The device object can be enumerated
- Depth-first walk of all objects in a device
- Objects can also be found through search by name
- Includes wildcards, fully recursive

AES70 and User Interfaces

- AES70 purposely does not specify UI aspects
- It does allow for logical grouping of objects which can direct GUI generation
- The strong typing enables automatic mapping to GUI objects
- There are no controller classes, controllers control device objects
- An example of a controller implementation could create a proxy class instance for each object in a device.
- Example, execute SetGain(v) on a proxy object will effectively result in that method being executed in the device using the protocol.

Keeping the connection and knowing when it is gone

- Keep alive mechanism on top of what the transport layer might offer.
- Allows controller and device to know when a session is done
- Both ends agree on a keep alive interval
- If no communication has been seen in that interval the session will end
- Improves connection loss detection on both connection and connectionless transport layers.
- When a session is terminated all state related to the connection is freed
- Reset device command, can be broadcast

Security

- AES70 offers secure operation on the network as an option (TLS)
- Installation of pre-shared keys is application specific.
- Access control is not part of AES70.
- A trusted controller can implement access control in an application specific manner.

AES70 controller

Controlling audio systems Can it be as simple as it used to be?

> Marc Smaak Bosch Security systems

Connection management in the old days

The user connecting the cables

- Mostly unicast
 - but also multicast

When needed select the right adaptation

Connection management today

- Only one cable type needed
- Many SW solutions to do connection management

X	AudioBox Setup	Danie Consultar I Barbank View
00 uConnect	Device ID Submasters Controller Assigns ALL_UFF Actions GP1 HESET Actions Could ref	State Constants
AudioLan		Gudinate
130A IP Speaker OMNEO EDK	Bundle Assignments	The Taxantine
Genelec Bosch	1 · 8 9 · 16 17 · 24 25 · 32 Module 1 Receiver 0 0 0 0	The laster
OHNED EDK	Module 1 Transmitter 0 0 0 0	a la
	33 · 40 41 · 48 49 · 56 57 · 54 Module 2 Receiver 0 0 0 0	- Film Anny Linkley Anny Bar Anny
		Hit Canada Uni Uni
		200 200 10
		- Mandas Canada - 197 Processor
	Cancel Save	Halina Haan Koga Ban Banka Mitaal Socials and
		PA Billings

All using different protocols

Connection management with AES70

Manual connection management

- Find your equipment to connect
- Detect connector types
- Plug-in the cable

AES70 connection management

- Discover the devices
- Capability enumeration
- Command sender & receiver to connect

Discover devices

- AES70 uses standard DNS-SD for device and service discovery
 - Simply browse for AES70 supporting devices
- No need for manual configuration of device lists
- No need to remember IP addresses

How does this work in practice?

C:\WINDOWS	S\system32	2\cmd.exe - d	Ins-sd -B_ocatcp	0		_	\times
10:23:45.526	Add	3	4 local.	_ocatcp.	CAP2-000499		^
10:23:45.526	Add	3	4 local.	_ocatcp.	CAP2-0004be		
10:23:45.526	Add	3	4 local.	_ocatcp.	CAP2-00049a		
10:23:45.526	Add	3	4 local.	_ocatcp.	CAP2-0004a6		
10:23:45.526	Add	3	4 local.	_ocatcp.	CAP6-000405		
10:23:45.526	Add	3	4 local.	_ocatcp.	CAP6-000404		
10:23:45.527	Add	3	4 local.	_ocatcp.	CAP6-000403		
10:23:45.527	Add	3	4 local.	_ocatcp.	CAP2-000498		
10:23:45.527	Add	3	4 local.	_ocatcp.	CAP2-0004a5		
10:23:45.527	Add	3	4 local.	_ocatcp.	CAP2-00049c		
10:23:45.527	Add	3	4 local.	_ocatcp.	CAP2-0004a1		
10:23:45.527	Add	3	4 local.	_ocatcp.	CAP2-0c1080		
10:23:45.528	Add	3	4 local.	_ocatcp.	CAP2-000460k		
10:23:45.528	Add	3	4 local.	_ocatcp.	CAP2-0004a3		
10:23:45.528	Add	3	4 local.	_ocatcp.	CAP2-00049e		
10:23:45.528	Add	3	4 local.	_ocatcp.	CAP6-000406		
10:23:45.528	Add	3	4 local.	_ocatcp.	CAP6-000407		
10:23:45.528	Add	3	4 local.	_ocatcp.	CAP6-000408		
10:23:45.529	Add	2	4 local.	_ocatcp.	Docent@EINZ6283		
10:23:53.371	Add	2	4 local.	_ocatcp.	CAP2-0004a8		
10:23:56.199	Add	2	4 local.	_ocatcp.	CAP2-0004b5		
10:24:04.631	Add	2	4 local.	_ocatcp.	CAP2 20004b7		
10:24:07.297	Add	2	4 local.	_ocatcp.	CAP2-0004ae		
10:24:08.591	Add	2	4 local.	_ocatcp.	CAP2-0004b0		
10:24:18.625	Rmv	0	4 local.	_ocatcp.	CAP2-0004b5		
10:24:19.644	Rmv	0	4 local.	_ocatcp.	CAP2-0004a8		
10:24:20.662	Rmv	0	4 local.	_ocatcp.	CAP2-0004ae		
10:24:23.687	Rmv	0	4 local.	oca. tcp.	CAP2-0004b7		

Capability enumeration

- See what the device has and what is available
 - Streaming protocol
 - inputs/outputs
 - Including the used once
 - Sample rate
 - Clock domains

			r OcaMediaTra	ansportNetwo	orkAes67	
Media Protocol	Aes67		Cond Day	-	0.001000	
			Send Pac	cket times	0.001000	
owner: 9702,id: {mod	le: Input,index: 1},name: 01		Recv Pa	cket Times	0.000125; 0.000250; 0	.000333; 0.001000
owner: 9702 id: {mod	e: Input index: 3) name: 03	Set port	Min Recv	/ Buffer Cap	0.000000	
owner: 9702,id: {mod	e: Input,index: 4},name: 04	name	Max Bec	v Buffer Can	0.002000	
owner: 9702,id: {mod	e: Input,index: 5},name: 05		-		0.001000	
owner: 9702,id: {mod	e: Input,index: 6},name: 06		Transm.	rime var.	0.001000	
Max Source Conn	16		Discover	y Systems	SAP	
				Add source	connector	Add sink connector
Max Sink Conn	16					
Max Pins per Conn	8		_			
Max Ports per Pin	8		OcaRoot.Oca	aAgent.OcaMe	diaClock 1.2.6	- 🗆 X
	-		OcaRoot			
Source Connectors			Classidentif	ication 1.2.6 v	rension 2 Loci	kable True
idInternal: 1,idExtern	al: ,connection: {secure: false,streamParameter		ObjectRole	OmneoDante	MediaClock	Lock Unlock
		Update				
			CoaAgent			
		Delete	Label			Set Label
<	>		Owner 10	0		
Sink Connectors			Owner Ito			
idInternal: 17,idExter	nal: ,connection: {secure: false,streamParamete		F OcaMediaClock	. ——		
		Update	ClockType	Network		
					✓ Set Cla	ack Type
		Delete	DomainID	0		
<	>	5 mil			Set Do	omain ID
Connector Statuses			Supported Clo	ock Rates Ra	te	
connectorID: 1 state	: Bunning errorCode: 0	1 1		no	minalRate: 48000.000000.pul	(Range: nan
connectorID: 17.sta	te: Running.errorCode: 0					
				<		>
			ClockRate	nominalRate: 4	48000.000000.pu	
		1/2			✓ Set Clo	ock Rate
			LockState	Locked		

With this information you know what can be connected to what

Capability enumeration

- If you know your device this info can be hardcoded in your controller
- AES70 has a globally unique Model GUID for this available (64 bit)
 - See OCA device manager
- Similar to experienced user who knows all details of a device by the model number

	1
Lockable True	
Lock Unlock	
Lockable True	

OcaDeviceManager		
DeviceName	AES1	Change
DeviceRole		Change
Enabled		Change 📈
Message		Change
UserInventoryCode		Change
ResetCause	PowerOn	ClearResetCause
ModelDescription		
OcaVersion	1	Set Reset Key
State	Operational	Poort
Serial	24062491136	i leset
ModelGUID	001C44 00000	0001
Managers		
Manager Descripti		

objectNumber: 1, name: DeviceManager,classID: {1.3.1}, classVersion: 1 objectNumber: 2, name: SecurtyManager, classID: {1.3.2}, classVersion: 1 objectNumber: 3, name: FimwareManager, classID: {1.3.3, classVersion: 1 objectNumber: 6, name: NetworkManager, classID: {1.3.4}, classVersion: 1 objectNumber: 7, name: NetworkManager, classID: {1.3.7}, classVersion: 2 objectNumber: 7, name: MediaClockManager, classID: {1.3.7}, classVersion: 2 objectNumber: 7, name: MediaClockManager, classID: {1.3.7}, classVersion: 2

This improves performance and reduces the load on the devices

Command sender & receiver to connect

- Fully under control of controller
 - Results in successful connection: sender and receiver capabilities do match
- Very scalable limited by controller performance not the devices
 - Hundreds of connections at once no problem
- Identical mechanism for multi & unicast connections, just different IP addresses
 - One to multiple with unicast supported → multiple streams
- Reliable since devices are supervised by the controller
 - Can move connection if a device fails → redundancy
 - Can stop transmitter when no receivers → Avoid bandwidth waist

CM advanced features

- Create streams with multiple channels to optimize bandwidth
 - Using OCA stream connector
 - Modify stream by add or removing channels (pins)
- Interoperable with proprietary protocols
 - As long as objects are updated by the device
 - Subscription mechanism to auto inform controller
- Use the build in security mechanism
 - Using standard TLS
 - Nobody can mess with your devices

Multiple controllers

- Redundancy
- Concurrency
 - Multiple AES70 controllers
 - Proprietary & AES70 controller

Multiple controllers; What about consistency?

- AES70 supports object locking
 - Locked objects are read/write for the controller who has the lock
 - Locked objects are read only for anybody else
 - Lock can even hide the state if needed

- AES70 supports subscriptions to objects state
 - Controllers are informed of changes, no frequent polling required

Multiple controllers operation

- Concurrent controllers environment
 - Controller locks, modifies, unlocks
 - Other controllers are updated automatically when subscribed to the object.
- Redundant controllers
 - Main controller locks the device by locking the device manger
 - Backup controller subscribes to all objects in all devices to stay up to date
 - If main controller disappears lock is auto removed so backup can take over.

Generic controllers

- Generic controllers are powerful
- They can easily create interoperability between different manufactures

A generic controller can	A generic controller can not
Discover all devices	Know which object belongs to which physical connector
Discover device capabilities	Know the exact functioning of the audio processing; e.g. Equalizer parameters
Discover the signal path	

Proper naming guidelines will make it easier for a generic controller

Tom de Brouwer

- Software Architect for Bosch Security Systems
- Involved in programming AES70 products: RTS Intercoms, Eletrovoice, Dynacord, Bosch
- Based in The Netherlands

Agenda

AES70 Controller concepts

AES70 based controller concepts

- Web-based
- Native e.g. C++ based program which run on a PC / Embedded platform / Touch screen device

emo

Possible deployment with OCA.js

Possible deployment with OCA.js

- Webserver maintains AES70 OCP.1 connections to the device
- Webserver acts as proxy to forward commands to / from the devices
- Marshalling of OCA commands is performed on Tablet/Phone/PC in Javascript
- Easy to adapt UI on bases of user needs
- Javascript programming i.s.o. native programming
- Possible applications: monitor of live audio systems, configuration of small systems
- Javascript controller code is available at https://github.com/DeutscheSoft/OCA.js
- GPLv2 license

Possible deployment with native controllers

- Every controller maintains own OCP.1 connection to endpoint
- Depending on support controller can use UDP/TCP
- Can support large systems with proprietary extensions
- Possible applications: proprietary controller with for example conference application, public address application, large system amplifier configuration with acoustic calculations
- No freeware native controller is available, controller implementation can be bought from a commercial supplier

How to make an AES70 controlocation

Where to find tools

- Members only area
- Public techsite

https://ocaalliance.github.io/

Home Downloads Developer Resources Links

Downloads

OCA Microdemo

The OCA Microdemo is a demonstration product developed by OCA Alliance members. Its primary purpose is to prove that OCA can run well in lightweight hardware environments. The MicroDemo meets minimum requirements for AES78 compliance, and provides a small set of OCA-controlled application functions as well.

The custom software, finished schematic diagrams, and PC board layouts, for the MicroDemo are publicly available at no charge, on commercially appropriate licensing terms. Please review the OCA Alliance End User License Agreement (<u>EULA</u>) prior to downloading and using these tools.

Download source code here: <u>OCAMicroOpenSource_r60.zip</u> Download hardware design files here: <u>OCA Micro Hardware Package 20160802.zip</u>

Focusrite RedNet Virtual OCA Device

The Focurite RedNet Virtual OCA Device is a device simulation developed by <u>Focurite</u>. It is useful when testing OCA Controllers. The device simulation is available as a Windows executable. Download 2P Archive here: <u>Focurite RedNet Virtual OCA Device zip</u>

OCA.js JavaScript library

OCA js is a javascript library that supports OCA. It can be used for building web-based OCA device controllers. It's an open-source component developed by OCA Alliance member Deus0, and is available on Github here: https://github.com/DeutscheSoft/OCAjs

AES70 Implementation Chart

The AES70 Implementation Chart is an Excel spreadsheet template that offers a standard way for documenting the OCA objects of a device. It is similar in purpose to the "MIDI Implementation Chart" pages frequently found in user manuals of MIDI-controlled devices. The AES70 Implementation chart is not part of the AES70 standard itself but instead a recommended practice offered by the OCA Alliance.

Download here: OCA Implementation Chart v06 .xltm

Here are example implementation charts for OCA devices mentioned elsewhere in this site:

- OCA MicroDemo
- Focusrite Rednet Virtual OCA Device

OCA Wireshark Plugin

Wireshark is a widely used network protocol analyzer. This plugin allows analyzing OCA network traffic using wireshark.

Download here: OCP.1.lua

OCA Alliance member downloads

Other OCA downloads are available to OCA Alliance members. These are mainly software development tools. Alliance membership information can be found here: http://ccaalliance.com/membership/

Membership

Demo setups

Making an AES70 Device: Connection management Setup

Making an AES70 Device: Controller Setup

